Teo Lee Peng's
Homepage
Publications
-
Z.Y. Kong and L.P. Teo, “An Elementary Proof of the Transformation Formula for the Dedekind Eta Function”, Armenian Journal of Mathematics 16 (2024), 1-22.
-
L.P.Teo, “Local Index Theorem for Cofinite Hyperbolic Riemann Surfaces”, arXiv:2401.12260.
-
Yawen Ma and Lee-Peng Teo, "Another Proof of Zagier’s Matrix Conjecture", Journal of Integer Sequences, 25 (2022), Article 22.6.4.
-
L.P. Teo, “Resolvent trace formula and determinants of n Laplacians on orbifold Riemann surfaces”, SIGMA 17 (2021), 083, 40 pages.
-
L. P. Teo, “Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points”, Lett. Math. Phys. 110 (2020), 61-82.
-
J. Park and L. P. Teo, “Liouville Action and Holography on Quasi-Fuchsian Deformation Spaces”, Comm. Math. Phys. 362 (2018), 717-758.
-
L. P. Teo, “Alternating double Euler sums, hypergeometric identities and a theorem of Zagier”, J. Math. Analysis Appl. 462 (2018), 777-800.
-
J. Park, L. Takhtajan and L. P. Teo, “Potentials and Chern forms for Weil-Petersson and Takhtajan-Zograf metrics on moduli spaces”, Adv. Math. 305 (2017), 856-894.
-
L. P. Teo, “Massive scalar Casimir interaction beyond proximity force approximation”, Int. J. Mod. Phys. A 30 (2015), 1550167.
-
A. Flachi and L. P. Teo, “Bubble-wall Casimir interaction in fermionic environments”, Phys. Rev. D. 92 (2015), 025032.
-
L. P. Teo, “Scalar cylinder-plate and cylinder-cylinder Casimir interaction in higher dimensional spacetime”, Phys. Rev. D. 92 (2015), 025023.
-
L. P. Teo, “Fermionic Casimir interaction in cylinder-plate and cylinder-cylinder geometries”, Phys. Rev. D. 91 (2015), 125030.
-
L. P. Teo, “Fermionic Casimir effect between spheres”, Phys. Rev. D 91 (2015), 085034.
-
L. P. Teo, “Finite temperature Casimir interaction between spheres in (D+1)-dimensional spacetime: Exact computations and asymptotic expansions”, Phys. Rev. D 90 (2014), 045012.
-
L. P. Teo, “Exact classical sphere-plate Casimir interaction in (D+1)-dimensional spacetime”, Phys. Rev. D. 89 (2014), 105033.
-
L. P. Teo, “Casimir interaction between spherical and planar plasma sheets”, Phys. Rev. A 89 (2014), 052509.
-
L. P. Teo, “Casimir interaction between spheres in (D+1)-dimensional Minkowski spacetime”, JHEP 05 (2014), 016.
-
L. P. Teo, “Sphere-plate Casimir interaction in (D+1)-dimensional spacetime”, J. Math. Phys. 55 (2014), 043508.
-
L. P. Teo, “Finite temperature Ferminoic Casimir interaction in Anti-de-Sitter spacetime”, Int. J. Mod. Phys. A 28 (2013), 1350158.
-
L. P. Teo, “Finite temperature Casimir effect on spherical shells in (D+1)-dimensional spacetime and its high temperature limit”, J. Math. Phys. 54 (2013), 103505.
-
L. P. Teo, “Material dependence of Casimir interaction between a sphere and a plate: First analytic correction beyond proximity force approximation”, Phys. Rev. D 88 (2013), 045019.
-
L. P. Teo, “Electromagnetic Casimir effect on the boundary of a D-dimensional cavity and the high temperature asymptotics”, J. Math. Phys. 54 (2013), 073504.
-
L. P. Teo, “Casimir interaction between a sphere and a cylinder”, Phys. Rev. D 87 (2013), 045021.
-
L. P. Teo, “Zero and finite temperature Casimir effect of massive vector field between real metals”, J. Math. Phys. 53 (2012), 102302.
-
L. P. Teo, “Mode summation approach to Casimir effect between two objects”, Int. J. Mod. Phys. A 27 (2012), 1230021.
-
L. P. Teo, “Casimir effect between two spheres at small separations”, Phys. Rev. D 85 (2012), 045027.
-
L. P. Teo, M. Bordag and V. Nikolaev, “On the corrections beyond proximity force approximation (PFA)”, Phys. Rev. D. 84 (2011), 125037.
-
L. P. Teo, “First analytic correction to the proximity force approximation in the Casimir effect between two parallel cylinders” Phys. Rev. D 84 (2011), 065027.
-
L. P. Teo, “Casimir interaction between two concentric cylinders at nonzero temperature”, Europhys. Lett. 96 (2011), 10006.
-
F.S. Khoo and L.P. Teo, “Finite temperature Casimir effect of massive fermionic fields in the presence of compact dimensions”, Phys. Lett. B 703 (2011), 199-207.
-
L.P. Teo, “Casimir interaction between a cylinder and a plate at finite temperature: Exact results and comparison to proximity force approximation”, Phys. Rev. D 84 (2011), 025022.
-
L.P. Teo, “Casimir interaction of concentric spheres at finite temperature”, Phys. Rev. D 84 (2011), 025014.
-
L.P. Teo, “Electromagnetic Casimir piston in higher-dimensional spacetimes”, Phys. Rev. D 83 (2011), 105020.
-
L.P. Teo, “The multicomponent KP hierarchy: Differential Fay identities and Lax equations”, J. Phys. A 44 (2011), 225201.
-
L.P. Teo, “The Casimir interaction of a massive vector field between concentric spherical bodies”, Phys. Lett. B 696 (2011), 529-535.
-
L.P. Teo, “Casimir effect of massive vector fields”, Phys. Rev. D 82 (2010), 105002.
-
L.P. Teo, “Casimir effect of electromagnetic field in Randall-Sundrum spacetime”, JHEP 10 (2010), 019.
-
L.P. Teo, “Casimir effect of electromagnetic field in D-dimensional spherically symmetric cavities” Phys. Rev. D 82 (2010), 085009.
-
L.P. Teo, “Casimir force in noncommutative Randall-Sundrum models revisited”, Phys. Rev. D. 82 (2010), 027902.
-
K. Takasaki, T. Takebe and L.P. Teo, “Non-degenerate solutions of universal Whitham hierarchy”, J. Phys. A 43 (2010), 325205.
-
L.P. Teo, “Casimir piston of real materials and its application to multi-layer models”, Phys. Rev. A 81 (2010), 032502.
-
L.P. Teo, “Conformal Mappings and Dispersionless Toda hierarchy II: General String Equations”, Commun. Math. Phys. 297 (2010), 447-474.
-
L.P. Teo, “Finite temperature Casimir effect for scalar field with Robin boundary conditions in spacetime with extra dimensions”, JHEP 11 (2009), 095.
-
L.P. Teo, “Casimir Effect in Spacetime with Extra Dimensions -- From Kaluza-Klein to Randall-Sundrum Models”, Phys. Lett. B 682 (2009), 259-265.
-
S.C. Lim and L.P. Teo, “Analytic and asymptotic properties of multivariate generalized Linnik's probability densities”, J. Fourier Anal. Appl. 16 (2010), 715-747.
-
S.C. Lim and L.P. Teo, “Modeling single-file diffusion by step fractional Brownian motion and generalized fractional Langevin equation”, J. Stat. Mech. 0908 (2009), P08015.
-
S.C. Lim and L.P. Teo, “Repulsive Casimir force from fractional Neumann boundary conditions”, Phys. Lett. B 679 (2009), 130-137.
-
L.P. Teo, “Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions”, JHEP 06 (2009), 076.
-
L.P. Teo, “Conformal mappings and dispersionless Toda hierarchy”, Commun. Math. Phys. 292 (2009), 391-415.
-
S.C. Lim and L.P. Teo, “Three dimensional Casimir piston for massive scalar fields”, Annals. Phys 324 (2009), 1676-1690.
-
L.P. Teo, “Finite temperature Casimir effect in Kaluza-Klein spacetime”, Nucl. Phys. B 819 (2009), 431-452.
-
L.P. Teo, “Finite temperature Casimir pistons for electromagnetic field with mixed boundary conditions and its classical limit”, J. Phys. A 42 (2009), 105403.
-
S.C. Lim and L.P. Teo, “Generalized Whittle-Matérn random field as a model of correlated fluctuations”, J. Phys. A 42 (2009), 105202.
-
L.P. Teo, “Finite temperature Casimir effect in spacetime with extra compactified dimensions”, Phys. Lett. B. 672 (2009), 190-195.
-
S.C. Lim and L.P. Teo, “Finite temperature Casimir effect in piston geometry and its classical limit”, Eur. Phys. J. C 60 (2009), 323-344.
-
S.C. Lim and L.P. Teo, “Fractional oscillator process with two indices”, J. Phys. A: Math. Theor. 42 (2009), 065208.
-
S.C. Lim and L.P. Teo, “Repulsive Casimir force at zero and finite temperature”, New J. Phys. 11 (2009), 013055.
-
S.C. Lim, M. Li and L.P. Teo, “Langevin equation with two fractional orders”, Phys. Lett. A 372 (2008), 6309-6320.
-
L.P. Teo, “The Weil--Petersson geometry of the moduli space of Riemann surfaces”, Proc. Amer. Math. Soc. 137 (2009), 541-552.
-
S.C. Lim and L.P. Teo, “Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure”, Stoch. Proc. Appl. 119 (2009), 1325-1356.
-
L.P. Teo, “Universal index theorem on Mob(S1)\Diff+(S1)”, J. Geom. Phys 58 (2008), 1540-1570.
-
S.C. Lim and L.P. Teo, “On the minima and convexity of Epstein zeta function”, J. Math. Phys. 49 (2008), 073513.
-
S.C. Lim and L.P. Teo, “Topological symmetry breaking of self-interacting fractional Klein-Gordon field on toroidal spacetime”, J. Phys. A: Math Theor. 41 (2008), 145403.
-
S.C. Lim and L.P. Teo, “Sample path properties of fractional Riesz-Bessel field of variable order”, J. Math. Phys 49 (2008), 013509.
-
A. Mcintyre and L.P. Teo, “Holomorphic factorization of determinants of Laplacians using quasi-Fuchsian uniformization”, Lett. Math.Phys. 83 (2008), 41-58.
-
S.C. Lim and L.P. Teo, “Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on zeta function technique”, J. Phys. A: Math. Theor. 40 (2007), 11645-11674.
-
C.H. Eab, S.C. Lim and L.P. Teo, “Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions”, J. Math. Phys 48 (2007), 082301.
-
S.C. Lim, Ming Li and L.P. Teo, “Locally self-similar fractional oscillator processes”, Fluctuation and Noise Letters 7 (2007), no.2, L169-L179.
-
S.C. Lim and L.P. Teo, “Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes”, J. Phys. A: Math. Theor. 40 (2007), 6035-6060.
-
L.P. Teo, “Bers isomorphism on the universal Teichmuller curve”, Math. Z. 256 (2007), no. 3, 603-613.
-
L.P. Teo, “Fay-like identities of the Toda lattice hierarchy and its dispersionless limit”, Rev. Math. Phys. 18 (2006), no. 10, 1055-1073.
-
T. Takebe and L.P. Teo, “Coupled modified KP hierarchy and its dispersionless limit”, SIGMA, Vol. 2 (2006), Paper 072, 30 pages.
-
L.A. Takhtajan and L.P. Teo, “Quantum Liouville theory in the background field formalism I. Compact Riemann surfaces”, Commun. Math. Phys. 268 (2006), 135-197.
-
T. Takebe, L.P. Teo and A. Zabrodin, “Lowner equations and dispersionless integrable hierarchies”, J. Phys. A. Math. Gen. 39 (2006), 11479-11501.
-
L.A. Takhtajan and L.P. Teo, “Weil-Petersson metric on the universal Teichmuller space”, Mem. Amer. Math. Soc., 183 (2006), no. 861, vi+119.
-
L.P. Teo, “A different expression of the Weil-Petersson potential on the quasi-Fuchsian deformation space”, Lett. Math. Phys.73 (2005), 91-107.
-
L.P. Teo, “Velling-Kirillov metric on the universal Teichmuller curve”, Journal d’ Analyse Mathematique, 93 (2004), 271-308.
-
L.P. Teo, “ Analytic functions and integrable hierarchies — characterization of tau functions”, Lett. Math. Phys. 64 (2003), 75-92.
-
L.A. Takhtajan and L.P. Teo, “Liouville action and Weil-Petersson geometry of deformation spaces, global Kleinian reciprocity and holography”, Commun. Math. Phys. 239 (2003), 183-240.
-
M.K. Chuah and L.P. Teo, “Dolbeault cohomology of G/(P,P)”, Math. Z. 230 (1999), no. 3, 595-602.
-
S.C. Lim and L. P. Teo, “Casimir Effect Associated with Fractional Klein–Gordon Field”, in Fractional Dynamics, World Scientific, 2011.
-
L.P. Teo and K. Kirsten, “Finite temperature Casimir effect in the presence of extra dimensions”, Proceedings of the “Ninth Conference on Quantum Field Theory Under the Influence of External Conditions”, World Scientific, 2010.
-
S.C. Lim and L.P. Teo, “Repulsive Casimir force for electromagnetic fields with mixed boundary conditions”, contribution to “High Energy Physics Conference on Particle Physics, Astrophysics and Quantum Field Theory – 75 Years since Solvay”, in Int. J. Mod. Phys. A 24 (2009), 3455-3461.